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Abstract— A control law is derived for full-state feedback
control of the single-phase Stefan problem, used @ model of
industrial casting processes. A conceptually novetontroller
design approach is proposed for this problem, withhe control
law chosen to ensure exponential stability of the varage
enthalpy, and proven to guarantee asymptotic convgence of
both the temperature field and the solidification font position
to a desired reference. A plausible output feedbackontrol
algorithm is also given that demonstrates good bek@r in
simulation.

. INTRODUCTION

Casting processes present significant control ehgés.
Many of the key quality and operational goals fuduistrial

the domain is divided into subdomains, one for galchse,
separated by a moving boundary. Within each subdgma
the temperature evolves according to the usualigdh
equation. At the solid-liquid interface, the enefgplance is
adjusted to account for the phase change. Thiss léach
differential equation for the evolution of the irfze
position in terms of the heat flux or temperaturadignt on
either side, which in general is not continuous tla¢
interface. This problem cannot be reduced to a lserar
PDE, or a bounded perturbation of a linear PDE. ths
reason, finding a control algorithm has provenidlift.

There have been many algorithms suggested, bboted
weaknesses for practical implementation. The nuwakri

casting processes can be met by matching a desiefimizaton methods in [1, 2] can handle realistic

temperature history while the material cools. Bareple, in

metallurgical constraints, but since the calcutaioare

continuous casting of steel slabs, a common defect complex and non-linear, they cannot realisticaliy m real-

cracking, either internal or on the surface. Trans® surface
cracks can be caused by mechanical strain whilestilie
solidifying slab is bent to pass through the castimchine.
Since ductility of steel during the cooling procésstrongly

time. As such, they are suited mostly for open looptrol.
Other researchers [3-5] have attempted to solvenierse
Stefan problem. Since these approaches focus on
interface only, they could be used for whale préwen but

temperature-dependent' these cracks can be av(ﬁged not for crack prevention. Finally, several atter‘r‘rpﬂse been

regulating the surface temperature. Internal cracks
contrast, are dependent on the temperature histbrthe
solidification front. An important safety goal iromtinuous
casting is the prevention of “whales.” The moltégesinside
the slab exerts a ferrostatic pressure outwardershell. If
the steel is not fully solidified by the time ilees the casting
apparatus, this pressure causes the shell to lmultyeard,
creating a defect that is called a “whale” duegsemblance
to the latter to the shape the bulging makes. Ati@mum,
this damages the equipment and causes a long tapkage
while the plant must wait for the whale to fullyatdefore it
can be cut out and removed. In the worst caseidligteel
can escape through the shell, potentially causiageraevere
damage or serious injuries. In terms of the tentpeza
profile, whale prevention is equivalent to ensuritie

temperature at caster exit is below the solidifoat
temperature.
Hence, achieving the quality and

simultaneously requires regulating the entire ifisted
temperature profile of the casting. This task, haaveis very
challenging — the solidification process is nordinén a
manner that existing distributed parameter coratgbrithms
are not suited to handle.

The Stefan problem is the name for a type of nealin
partial differential equation (PDE) that is commpnked to
model such phase changes in pure materials. InaURIDE,
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made in recent years to provide feedback contrbichvis
naturally more suitable for real-time implementatidrhe
methods in [6, 7] apply Pl control, in [6] to tharface
temperature and in [7] to the solidification froBy applying
the finite-dimensional approach, both approachdsiese
good results for one of the key process goalsnbutall of
them. The approaches in [8, 9] are more sophisticabut
assumes unrealistic “thermostat” style actuation.

Finally, in [10], a full-state feedback control lawas
designed to have the temperature converge to aereie
temperature profile. While guaranteeing uniformragiotic
stability of the error, the derived control law &bpotentially
require unbounded actuation. This caused the clioggd
system to behave erratically in simulations. Touemsvell-
posedness of the problem, the control law needetbeto
saturated, which was not considered in the convese
proof. Moreover, even the unbounded control lawgemi

safety goal§ould not be proven to guarantee convergence ahteegace

position to the reference.

We claim that the fundamental issue with the apghrda
the latter work was the use ofemperature-based Lyapunov
functional. In solidification, the important quawtiis the
enthalpy of the material, which changes sharply and
nonlinearly with temperature. This novel conceptual
framework is more clearly connected to the physitshe
problem, and the effect of the available contrgduin This
allows for a control algorithm that guarantees esgence of
the full state, temperature and interface locatiaturally,
without requiring unrealistic actuation.

In this paper, as in [10], we attempt to reguldte t
temperature of a solution to the Stefan probleratirad to a

the



reference solution. This reference solution wilitally be
designed offline by a metallurgist, e.g. using thanerical
optimization techniques in [1, 2], to achieve thesiced
quality goals from a nominal initial condition. Th@ntrol
objective, then, is to asymptotically convergehis tdesired
trajectory from a different initial condition.

In Section Il, we describe the problem settingSkttion
lll, we give the main result of the paper, a contagv that
guarantees simultaneous asymptotic convergence hef
temperature and interface position to the refergmoéle. In
Section IV, we briefly discuss some potential egiens of
this new framework.

Il. THE STEFAN PROBLEM
A. The Two-Phase Sefan Problem

temperature. The thermal diffusivity =k / oc,, wherek

is the thermal conductivity,p the density, andc, the
specific heat. The coefficient in the Stefan cdodit(2) is
b=k/pL,, where L, is the latent heat of fusion. The
Neumann boundary control inputu(t) is directly
proportional to the heat flux at the surface frdra tooling

%/vater sprays.

B. The Sngle-Phase Sefan Problem
In order for the initial condition to be physikal
sensible,s, should be in(0,L), and T,(x) should be less
than T, for x<s, and greater thad,; for x>s,. That is,

the initial liquid portion should be above the rimejt
temperature and the initial solid portion should Hedow.

Following the modeling approach of [11], theHowever, in actual casting conditions, the tempeeain the

temperature of steel in a continuous slab caster lwa
modeled accurately using a one-dimensional doniab

casters are so named because they are much wéger(l
than 1 m, usually) than they are thick (on the oodeéd.1 m).

Away from the narrow faces, heat transfer in thelthvi
direction is negligible. In the “axial” or castimliyection, heat
is advected by the material moving through theerast the
casting speed as well as conducted. A scaling argtican

liquid is negligible. A typical superheat (the @ifénce
between the initial temperature in the liquid ahd melting
temperature) is only around 25°C. In comparisoa,aberage
surface temperature of the steel in the castemisnal 500°C
less than the melting temperature. Moreover, duduid
flow in the liquid, the temperature in the liquebhches steady
state much more quickly than conduction alone would
achieve. Hence, a common modeling assumption fizr th

be made that advection dominates conduction in thiffoblem is to assume the initial temperature inlitpeid is

direction. Then, by using a frame of reference thatves
with the material, i.e. the Lagrangian approachalalkeat
transfer can be neglected. This leaves a one-diomals
transverse slice of material traveling through¢hster at the
casting speed as the spatial domain of the systéfurther

uniformly equal to the melting temperature,.

This reduces the dynamics of the problem to ordgé¢hof
the solid phase. However, for ease of notation and
calculation, we will continue to use the PDE (1)-f@r the

assume that the temperature is symmetric across &t of this paper, with the following assumption:

centerline of this slice.

We denote the temperature in the material §%,t) on
the domain (x,t)0(0,L)x[00) where x=0 and x=L
correspond to the surface and center of the siipectively.
We denote the position of the liquid-solid intedaas s(t) .
On this domain, the two-phase Stefan problem is:

xO(o,.L)-{s(t)} ,

T, (x.t) =aT, (xt),
T(s(t).t)=T,,

(1)
T.(0t)=u(t), T(Lt)=0,
T(X,O) =T, (X) ’
5(t) =T, (1) 75 ®)

s(0)=s
The parameters, b, and L are all positive.

(Al) The initial conditions satisfy:0<s, <L,
T,(X)<T, and is non-decreasing for al< x<s,,
and T,(x)=T, for all x=s,, and are piece-wise
smooth.

We also make an assumption on the control im[(m) :
(A2) inf u(t) =0 and supu(t) <.

Finally, we make one assumption on the tempergtoie:
(A3) During the time in questiorg <s(t)<L.

The first two assumptions are physically sensibletifie
target application. Castings solidify from the ddesin, and
since they are at high temperatures there is alveayse
minimum cooling at the surface due to radiation aatural
convection. The third assumption is meant to enghee
problem remains nonlinear. After solidification endor

The physical meaning of these equations is that tefore it begins, the problem is linear and mayléalt with
material is solid between the surface and the ng)virﬂsmg any of the available well-studied methods wark for

boundary s(t), and liquid between the boundary and th
Inside each phase, the temperaturevevol

centerline.
according the usual heat diffusion equation. Thefa®t
condition (2) follows from a heat balance at theeiface,
taking into account the energy required to freeddfarential
portion of the material. In these equatioils, is the melting

éuch problems (e.g. [12]). Whenever possible, wié gilre

conditions that ensure the assumptions are satisfie

C. Reference temperature and error
As stated above, the control objective is to matchme
ideal temperature profile. We denote this profieTa(x,t)



and 5(t). We assume it is defined as the solution to (})-(

under some known initial condition$,(x) and §,, and

control T(t).

We use the notationT (x,t):=T(xt)-T(xt) and
3(t)=s(t)-s(t) for, respectively, the temperature anc
interface position reference errors. We also deno

a(t)=u(t)-u(t). Since solutions to (1)-(2) are continuous
everywhere on the spatial domain, and at leasetgpatially
differentiable everywhere except at the moving latauy, the

reference errofl inherits these properties. In particular, the
temperature error satisfies the equations,

T, (xt) = aT, (xt), xO(o,L)-{s(t)} ofs(t)} .
T.(0t)=qa(t), T,(Lt)=0.
Moreover, if s(t)#5(t), then 'Fx(s(t)_,t):'ﬁ(s(t)+ ,t),
which means

3)

$(t) =-bT, (x.t)

and, similarly,

x=3(t)"
)
As they are continuous and piecewise continuous
differentiable, T, T , and T are all in the Sobolev space
H*(0,L) at all times. We will denote, when needed

s (t) =min{s(t),s(t)}. s, (t) =max{s(t) 5(t)} .
From this point onwards we will simplify notationy b
dropping the argument(s) for most terms, and udrg

example,T (X) instead ofT (xt) .

5(t) =bT,(xt)

x=5(t)"

and

D. Openloop simulation

Table 1 gives the parameters used for all simariatin
this paper. The properties approximate ultra-lowboa
(ULC) steel. The initial temperatures used are show
Figure 1. Simulations were performed using an dpyha
based code, rather than a true numerical implertientaf
the moving boundary. However, the simulation codes h
matches well with a known analytical solution te tBtefan
problem from [13].

TABLE 1. THERMODYNAMIC PROPERTIES USED IN SIMULATIONS

Symbol Description Value

A thermal diffusivity 2.27 x 18 WimK
B Stefan condition constant 4.13 x10/mK
T melting temperature 1811 K

L half-thickness of material| 0.2 m

u constant reference input 3000 K/m

Figures 2 and 3 show, respectively, the temperagtrer
and interface position when open-loop control isdusThat
is, there is an initial error, but is never changed from the
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Figure 3. Interface position error using nominaitcol input

constant reference input. A more detailed discussicthese
figures is given in Section IV.A, below.

Il.  FULL-STATE FEEDBACK

A. Preliminaries and notation

If the solution (T,s) to the PDE (1)-(2) satisfies
assumptions (Al1)-(A3), we can immediately concladiew
facts. First, T,(X)<T, and is non-decreasing for all



0<x<s(t), which in turn impliess(t)=0 for all t=0. I(A2) and (A3), the boundary condition satisfies the control

For the single-phase Stefan probleri,(x)=0 when o )

s, <x<L. u(t) =a(t) +kH (1), (10)

and the closed-loop system satisfies assumptions (A2) and
Since (1) is parabolic on the subdomains, if (AB)ds (A3).

then T, is uniformly bounded by a constant depending en th .

initial condition and bounds on. (See, e.g., Theorem 11.1  Then the reference temperature error T converges

from Section 11111, p. 211 of [14].) By (2), thiseans that 2Ymptotically to O uniformly over the domain, and the

the solidification front speed is bounded, i.e. interface position error § converges to 0 asymptotically as

well.
0<Spin S8<Sax <. (6) ) . ) .
Also, as a consequence of the version of Poincardd0f In light of (9), if the control law (10) is use4j,—||

inequality given in [12] (Lemma 2.1, p. 17), we Baan and |0 are exponentially decreasing. As noted abovel] if a

estimate orT][,: assumptions are satisfie®,, and T, and consequently also

L L L T are bounded inH'(O,L)over time. Then, by the
[ Traxsar?(s)+al? Th=ape Al Tk o
0 0 0 definition of H in (8),|§| must also be bounded.

That is, bothT and T, are bounded in thé, (0,L) norm, o . , L
Similar to the main proof in [10], we apply an mife-

and henceT is bounded in the Sobolev SpatH!l(O,L). dimensional invariance principle from [15]. Considiae
Similarly, Agmon’s Inequality (Lemma 2.4, p. 2@pid) Lyapunov functional candidate
ensures th is also uniformly bounded. _ .
il V(T)=2[ Toax-2T, (s+5) +22T,L
We now introduce the notation: 270 b b
on the state space of the error systéﬁ]s) OHY(0,L)xR.

1 .
ET’ ifT<T, This function is clearly continuous on that spaaeg non-
h(T):= L : negative on trajectories of the system.
gT s ifT2T, Taking the time derivative of the first term,
In the physical system, this is proportional to é¢mthalpy of d1,e 1d[ s S~ L~
the material at the given temperature. We will ube dt 24 T dx =—ZEUOT2dX+J‘§T2dX+L Tzdx}

o I _ . 11)
notationh:=h(T)—-h(T ) for the difference in enthalpy and 5 .n S . (
™ ( ) by =.[0 TI]dx+_LTI’ldx+.[§L'I‘I]dx.
g = J.OL Fax :lj:fdx—iblé, ®) Then, applying the PDE (3), and integrating by @art
a
for the total difference. Taking the time derivatiof this EE'[OLdex:a.[:‘ﬁzxxdx+ aj.szﬁxxdx+aj¢'l~'|:xxdx
value, and using the fact thatis continuous, dt 2 > *
3 L =afT,
dy-d ij Tax-15
dt dtlaJlo b

5 a'[siffdx +alT,
0 0

9 Sz
. —a.[ T dx
S S

+alT,

; —aILfXde

L . s

:EJ. Ttdx—éé &
aJo b .

= a7 (0)T, (0)-aTT” -afT,

Using equations (3)-(5), L
g L1 +aT (L)T, (L) -af T7dx
3 L~ . .
EH:J‘OTXX_B&LBS Applying the boundary conditions from (1) and the
relationships (4) and (5),
=T 4T,

. . ©) ) ) )

| 9L F2gx= -af (0)a-a[ Frox

(L) =-a. dt 2+ 0 (12)
A=y \. Ayy-

B.  Control law +BT(S)S—ET(S)S

With these estimates in mind, we now state the main Differentiating the second term using gives

result of this paper:
d . L=
Theorem 1.Suppose the initial conditions satisfy assumption 855227 (5+3) (13)
(AL), the reference temperature profile satisfies assumptions . dt b b
Combining (12) and (13),



d /- L L. will ensure that assumption (A2) holds an This gain can
EV (T) =-al (O)U -a 0 Todx be further adjusted to limit the amount of conaoluation, at
a a the trade-off of reducing the rate of convergence.
+E(T(S)_Tf )S_E(T (§)+Tf )§ (14) Assumption (A3) is more problematic. Obviously, the
L material will eventually completely solidify. Theobnds
=-aT (0)i-a fxzdx—E(T_(s)s+T(§)§)_ necessary to the proof can still be shown to halbwing
0 b s=L and neglecting the Stefan condition (2) in the PDE
We already noted thaj decreases exponentially, and The temperature conditiorlT (s) =T, which was used in

<\/E||_|: ” (15) deriving (7) and (_15), will gls_o be lost. H_owev'ﬁris fairly
= x|l easy to find equivalent limits on the linear systefhe
conclusion, that the temperature error convergésramly to

0, will still hold, but this is not a satisfyinggelt. Hence, for
. b n certain initial errors and reference profiles, teenperature
Under the assumptions, both and S are positive and error may not converge very closely before solidifion is

bounded below, as discussed above. Since the tatupes completed. In general, as the spedd of the reference

are bounded, choosing an appropriate temperallaie SCsolidification front speed gets smaller, the terapane and

ensuresT (s) and T(S) are also non-negative. So, aftefjyterface position errors will converge closer théfore the
enough time, material is completely solidified.

. . - L.
[7(0)=[7(9)-T (1)) =[], T
where the final inequality follows from that of Gdny-
Schwarz. Thus, the first term is exponentially @asing.

- L.y A stronger result would be to guarantee the rate of
-V (t)s—a T, dx (16) convergence, but we are currently unable to prdvs t
dt 0 . . .
mathematically. We can, however, offer simulatieidence

Then, applying the Poincare inequality given in][2mma that this is the case. Figures 4-6 show a simulatibthis

2.1, p 2.30), . o
P ) control algorithm. The actual syster(iT,s) is given a
L . a L . - —
- JO T2dx < —EJ.OTde+2T2(L) different initial condition than the reference syst(Ts).
L The specific initial conditions used are shown iguFe 1,
= -4;;_[ T2dx = -W (‘f) and the rest of the simulation parameters are giv@able 1.
0

We now apply the infinite dimensional invariance Due to the spatial_discretization, 'ghe location tbe
principle in [15], Theorem 6.3, p. 195. Using thettation interface s has some inherent uncertainty that can lead to

numerical noise in control law (10). Since the dation
denote " to be H'(0,L)xR, the state space of the prob-method used is based on the calculated enthakpgcht node,
lem, and) to be CO(O,L)X]R _DenoteW andV to be thiswas used directly in the control calculatiomstead. This
. . ensures the control response, seen in Figure 6, mtespike
the extensions ofV andV respectively to)’. By an app- \yhenever the estimated interface position passesie.
lication of the Rellich-Kondrakov theorem (Theorémb, p. o .
269 in [16]) and the Ascoli-Arzela criterion (Apyuéir C.7, In ﬁh|s S|mulat'|on,_the reference temperature ameriace
p. 635,ibid), . can be shown to be compactly embedded iReSItion errors, in Figures 4 and 5, respectivalg clearly
Y. As noted above, the trajectories of the errotesysare CONVerging exponentially fast. Work is continuingto
bounded in the spacg’ . All conditions of the theorem are proving such bounds on the rate of convergence.
met, and we conclude that all trajectories of tlystesn Finally, we note that the proof was only specific the

converge to the set single-phase Stefan problem in applying Agmon’s and
- Poincare’s Inequalities, e.g. in (15), which reqdirthat

M D{yDy.W(y) _O} '{T =O} T(L)=0, and in using the estimate (6) to ensure negative
in the )-norm. That isT converges to 0 uniformly. definiteness of the Lyapunov functional time deti@ The

) - . . former is easily dealt with by using a weaker bounc"'I:”
Then, since botfl and |H| converge to 0, according to *

based on compactly embedditt (0,L) into C°(0,L), as

) ) ) ) described above. The inequality (6) is still usp#dlie for the
C. Discussionand simulation two-phase Stefan problem, but it is difficult totelenine
The main weakness of this result lies in the appllty exact conditions on the inputs and initial condifothat
of the assumptions. Assumption (Al) depends onlythen ensure the condition holds. Currently, the beat ttan be
initial conditions, and is entirely reasonable. dmption proven for the two-phase Stefan problem is thevalhg:
(A2) can be satisfied by choosing the controlleing&
sufficiently small. For example,

the definition (8),5 must converge to 0 as weti.

Corollary 1. Suppose the system satisfies the conditions of
Theorem 1, with the exception that we allow Ty (x) >T; in
Kk <~|n¢ the range s, <x<L, and a similar condition on the

H (t - 0) reference. Then, if both $>0 and S0 for the entire time,



the reference temperature error convergesto 0 in the uniform
norm, and the interface position error convergesto 0 aswell.

IV. EXTENSIONS

A. Temperature-convergent control
Returning to the calculation (14), if
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a(0)T(0)= 0, 17)
then the estimate (16) still holds, and the invaré&principle
can be applied. However, the total enthalpy may not
converge to 0, so temperature convergence doesmmby
convergence of the interface position. In fact, fan
arbitrarily small temperature error, the interfposition error
can still be arbitrarily large. To summarize:

Theorem 2. Suppose the reference system and actual system
satisfy assumptions (Al)-(A3) and condition (17). Then the
reference temperature error converges uniformly to O.

This result covers a class of controllers including
proportional control based on the surface temperaand
similar finite-dimensional approaches. However,re¢hare
great drawbacks to this simplistic approach, whimfe
illustrated by the simulations shown in Figuresd 8.

Both actual and reference system in these simulatise
the reference input for the boundary condition, ie= 0.
Under Theorem 2, the temperature error should ageve
0. Figure 2 does show the temperature error comgrgut
extremely slowly. There is also the problem of therface
position. From (9), we can conclude that the tetathalpy
error is constant over time. Then, given (8), thterface
position error must converge to a constant thabis-zero if
the initial total enthalpy error is non-zero. Thishavior can
be observed in Figure 3.

B. Estimation and output feedback

Unfortunately, full-state feedback is not realidiie this
problem. Enthalpy cannot be directly measured, only
temperature can. Moreover, only the steel surface
temperature can realistically be measured durintuahc
casting. For an implementable control algorithm,need an
estimation scheme.

One approach, as proposed in [10], is to use thdtref
Theorem 2 to provide an estimation algorithm. Tdesiis to

use an estimaté‘f,é) of the actual system that is a solution
to (1)-(2) with left-hand boundary condition

T(0,t)=T(0t).
Under Theorem 2, the temperature estimation erould

converge to 0, but the interface position estinmatizay not
converge to the true location.

In simulations, we have achieved better perforraanc
using an estimation procedure that adjusts thelifioétion
front position as a function of the surface tempem
estimation error. The method, which is not yet prouo
work, is as follows:

Let T and § be an estimate of the temperatufe and
interface locations, respectively. Let the estimates satisfy
the following PDE
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R . R To =Ty, Sp=5p-
(xt) =aT, (xt), XD(O'L)_{S(t)} ’ The estimation and reference errors appear to beecging
2 (a to 0 exponentially. However, this apparent reselnains
T(5(t).t)=T,, P y . pp e

(18) conjecture, and is a subject of ongoing work.

) V. CONCLUSION

The goal of this paper is to improve on previousuhs
é(t):‘b('l:x(é(t +)—'I:x(§(t)_))+l(‘I:(O,t)‘T(OI)) on control of solidification systems by changing tarror

'(19) framework. The key insight is that when the comgéradiesign

§5(0)=§ is based on a norm of themperature error, the controller
where the initial conditions satisfy assumption Y&hd the May attempt to over-compensate for the nonlineaadycs,
estimation gairl > 0. leading to unbounded, quickly varying actuation,sasn in

[10]. This paper uses the novel conceptual framkewar
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