
  

  

Abstract— A control law is derived for full-state feedback 
control of the single-phase Stefan problem, used as a model of 
industrial casting processes. A conceptually novel controller 
design approach is proposed for this problem, with the control 
law chosen to ensure exponential stability of the average 
enthalpy, and proven to guarantee asymptotic convergence of 
both the temperature field and the solidification front position 
to a desired reference. A plausible output feedback control 
algorithm is also given that demonstrates good behavior in 
simulation. 

I. INTRODUCTION 

Casting processes present significant control challenges. 
Many of the key quality and operational goals for industrial 
casting processes can be met by matching a desired 
temperature history while the material cools. For example, in 
continuous casting of steel slabs, a common defect is 
cracking, either internal or on the surface. Transverse surface 
cracks can be caused by mechanical strain while the still-
solidifying slab is bent to pass through the casting machine. 
Since ductility of steel during the cooling process is strongly 
temperature-dependent, these cracks can be avoided by 
regulating the surface temperature. Internal cracks, in 
contrast, are dependent on the temperature history at the 
solidification front. An important safety goal in continuous 
casting is the prevention of “whales.” The molten steel inside 
the slab exerts a ferrostatic pressure outward on the shell.  If 
the steel is not fully solidified by the time it leaves the casting 
apparatus, this pressure causes the shell to bulge outward, 
creating a defect that is called a “whale” due to resemblance 
to the latter to the shape the bulging makes. At a minimum, 
this damages the equipment and causes a long work stoppage 
while the plant must wait for the whale to fully cool before it 
can be cut out and removed. In the worst case, liquid steel 
can escape through the shell, potentially causing more severe 
damage or serious injuries. In terms of the temperature 
profile, whale prevention is equivalent to ensuring the 
temperature at caster exit is below the solidification 
temperature. 

Hence, achieving the quality and safety goals 
simultaneously requires regulating the entire distributed 
temperature profile of the casting. This task, however, is very 
challenging – the solidification process is nonlinear in a 
manner that existing distributed parameter control algorithms 
are not suited to handle. 

The Stefan problem is the name for a type of nonlinear 
partial differential equation (PDE) that is commonly used to 
model such phase changes in pure materials. In such a PDE, 
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the domain is divided into subdomains, one for each phase, 
separated by a moving boundary. Within each subdomain, 
the temperature evolves according to the usual diffusion 
equation. At the solid-liquid interface, the energy balance is 
adjusted to account for the phase change. This leads to a 
differential equation for the evolution of the interface 
position in terms of the heat flux or temperature gradient on 
either side, which in general is not continuous at the 
interface. This problem cannot be reduced to a semilinear 
PDE, or a bounded perturbation of a linear PDE. For this 
reason, finding a control algorithm has proven difficult. 

There have been many algorithms suggested, but all have 
weaknesses for practical implementation. The numerical 
optimization methods in [1, 2] can handle realistic 
metallurgical constraints, but since the calculations are 
complex and non-linear, they cannot realistically run in real-
time. As such, they are suited mostly for open loop control. 
Other researchers [3-5] have attempted to solve the inverse 
Stefan problem. Since these approaches focus on the 
interface only, they could be used for whale prevention, but 
not for crack prevention. Finally, several attempts have been 
made in recent years to provide feedback control, which is 
naturally more suitable for real-time implementation. The 
methods in [6, 7] apply PI control, in [6] to the surface 
temperature and in [7] to the solidification front. By applying 
the finite-dimensional approach, both approaches achieve 
good results for one of the key process goals, but not all of 
them. The approaches in [8, 9] are more sophisticated, but 
assumes unrealistic “thermostat” style actuation. 

Finally, in [10], a full-state feedback control law was 
designed to have the temperature converge to a reference 
temperature profile. While guaranteeing uniform asymptotic 
stability of the error, the derived control law could potentially 
require unbounded actuation. This caused the closed-loop 
system to behave erratically in simulations. To ensure well-
posedness of the problem, the control law needed to be 
saturated, which was not considered in the convergence 
proof. Moreover, even the unbounded control laws given 
could not be proven to guarantee convergence of the interface 
position to the reference. 

We claim that the fundamental issue with the approach in 
the latter work was the use of a temperature-based Lyapunov 
functional. In solidification, the important quantity is the 
enthalpy of the material, which changes sharply and 
nonlinearly with temperature. This novel conceptual 
framework is more clearly connected to the physics of the 
problem, and the effect of the available control input. This 
allows for a control algorithm that guarantees convergence of 
the full state, temperature and interface location naturally, 
without requiring unrealistic actuation. 

In this paper, as in [10], we attempt to regulate the 
temperature of a solution to the Stefan problem relative to a 
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reference solution. This reference solution will typically be 
designed offline by a metallurgist, e.g. using the numerical 
optimization techniques in [1, 2], to achieve the desired 
quality goals from a nominal initial condition. The control 
objective, then, is to asymptotically converge to this desired 
trajectory from a different initial condition. 

In Section II, we describe the problem setting. In Section 
III, we give the main result of the paper, a control law that 
guarantees simultaneous asymptotic convergence of the 
temperature and interface position to the reference profile. In 
Section IV, we briefly discuss some potential extensions of 
this new framework. 

II. THE STEFAN PROBLEM 

A. The Two-Phase Stefan Problem 

  Following the modeling approach of [11], the 
temperature of steel in a continuous slab caster can be 
modeled accurately using a one-dimensional domain. Slab 
casters are so named because they are much wider (larger 
than 1 m, usually) than they are thick (on the order of 0.1 m). 
Away from the narrow faces, heat transfer in the width 
direction is negligible. In the “axial” or casting direction, heat 
is advected by the material moving through the caster at the 
casting speed as well as conducted. A scaling argument can 
be made that advection dominates conduction in this 
direction. Then, by using a frame of reference that moves 
with the material, i.e. the Lagrangian approach, axial heat 
transfer can be neglected. This leaves a one-dimensional 
transverse slice of material traveling through the caster at the 
casting speed as the spatial domain of the system. We further 
assume that the temperature is symmetric across the 
centerline of this slice. 

We denote the temperature in the material as ( ),T x t  on 

the domain ( ) ( ) [ ), 0, 0,x t L∈ × ∞  where 0x =  and x L=  

correspond to the surface and center of the slab, respectively. 
We denote the position of the liquid-solid interface as ( )s t . 

On this domain, the two-phase Stefan problem is: 
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The parameters a , b , and L  are all positive. 

The physical meaning of these equations is that the 
material is solid between the surface and the moving 
boundary ( )s t , and liquid between the boundary and the 

centerline. Inside each phase, the temperature evolves 
according the usual heat diffusion equation. The Stefan 
condition (2) follows from a heat balance at the interface, 
taking into account the energy required to freeze a differential 
portion of the material. In these equations, fT  is the melting 

temperature. The thermal diffusivity is / pa k cρ= , where k  

is the thermal conductivity, ρ the density, and pc  the 

specific heat. The coefficient in the Stefan condition (2) is 
/ fb k Lρ= , where fL  is the latent heat of fusion. The 

Neumann boundary control input ( )u t  is directly 

proportional to the heat flux at the surface from the cooling 
water sprays.  

B. The Single-Phase Stefan Problem 

  In order for the initial condition to be physically 
sensible, 0s  should be in ( )0,L , and ( )0T x  should be less 

than fT  for 0x s<  and greater than fT  for 0x s> . That is, 

the initial liquid portion should be above the melting 
temperature and the initial solid portion should be below. 
However, in actual casting conditions, the temperature in the 
liquid is negligible. A typical superheat (the difference 
between the initial temperature in the liquid and the melting 
temperature) is only around 25°C. In comparison, the average 
surface temperature of the steel in the caster is around 500°C 
less than the melting temperature. Moreover, due to fluid 
flow in the liquid, the temperature in the liquid reaches steady 
state much more quickly than conduction alone would 
achieve. Hence, a common modeling assumption for this 
problem is to assume the initial temperature in the liquid is 
uniformly equal to the melting temperature, fT . 

This reduces the dynamics of the problem to only those of 
the solid phase. However, for ease of notation and 
calculation, we will continue to use the PDE (1)-(2) for the 
rest of this paper, with the following assumption: 

(A1) The initial conditions satisfy: 00 s L< < ,  

( )0 fT x T<  and is non-decreasing for all 00 x s≤ < , 

and ( )0 fT x T=  for all 0x s≥ , and are piece-wise 

smooth. 

We also make an assumption on the control input ( )u t : 

(A2) ( )inf 0u t ≥ and ( )supu t < ∞ . 

Finally, we make one assumption on the temperature profile: 

(A3) During the time in question, ( )0 s t L< < . 

The first two assumptions are physically sensible for the 
target application. Castings solidify from the outside in, and 
since they are at high temperatures there is always some 
minimum cooling at the surface due to radiation and natural 
convection. The third assumption is meant to ensure the 
problem remains nonlinear. After solidification ends, or 
before it begins, the problem is linear and may be dealt with 
using any of the available well-studied methods that work for 
such problems (e.g. [12]). Whenever possible, we will give 
conditions that ensure the assumptions are satisfied. 

C. Reference temperature and error 

As stated above, the control objective is to match some 
ideal temperature profile. We denote this profile as ( ),T x t  



  

and ( )s t . We assume it is defined as the solution to (1)-(2) 

under some known initial conditions ( )0T x  and 0s , and 

control ( )u t . 

We use the notation ( ) ( ) ( ), : , ,T x t T x t T x t= −ɶ  and 

( ) ( ) ( )s t s t s t= −ɶ  for, respectively, the temperature and 

interface position reference errors. We also denote 
( ) ( ) ( )u t u t u t= −ɶ . Since solutions to (1)-(2) are continuous 

everywhere on the spatial domain, and at least twice spatially 
differentiable everywhere except at the moving boundary, the 
reference error Tɶ  inherits these properties. In particular, the 
temperature error satisfies the equations, 

( ) ( ) ( ) ( ){ } ( ){ }
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Moreover, if ( ) ( )s t s t≠ , then ( )( ) ( )( ), ,x xT s t t T s t t
− += , 

which means 
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and, similarly, 
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As they are continuous and piecewise continuously 

differentiable, T , T , and Tɶ  are all in the Sobolev space 

( )1 0,H L  at all times. We will denote, when needed, 

( ) ( ) ( ){ }1 min ,s t s t s t= , and ( ) ( ) ( ){ }2 max ,s t s t s t= . 

From this point onwards we will simplify notation by 
dropping the argument(s) for most terms, and using for 

example, ( )T xɶ  instead of ( ),T x tɶ . 

D. Open loop simulation 

 Table 1 gives the parameters used for all simulations in 
this paper. The properties approximate ultra-low carbon 
(ULC) steel. The initial temperatures used are shown in 
Figure 1. Simulations were performed using an enthalpy-
based code, rather than a true numerical implementation of 
the moving boundary. However, the simulation code has 
matches well with a known analytical solution to the Stefan 
problem from [13]. 

TABLE 1.  THERMODYNAMIC PROPERTIES USED IN SIMULATIONS 
Symbol Description Value 

A thermal diffusivity 2.27 x 10-5 W/m·K 

B Stefan condition constant 4.13 x 10-8 W/m·K 

Tf melting temperature 1811 K 

L half-thickness of material 0.2 m 

u  constant reference input 3000 K/m 

 

Figures 2 and 3 show, respectively, the temperature error 
and interface position when open-loop control is used. That 
is, there is an initial error, but u  is never changed from the 

constant reference input. A more detailed discussion of these 
figures is given in Section IV.A, below. 

III.  FULL-STATE FEEDBACK 

A. Preliminaries and notation 

If the solution ( ),T s  to the PDE (1)-(2) satisfies 

assumptions (A1)-(A3), we can immediately conclude a few 
facts. First, ( )0 fT x T<  and is non-decreasing for all 

 
Figure 1. Initial conditions for simulations 

 

 
Figure 2 Reference temperature error using nominal control input 

 

 
Figure 3. Interface position error using nominal control input 

 



  

( )0 x s t≤ < , which in turn implies ( ) 0s t ≥ɺ  for all 0t ≥ . 

For the single-phase Stefan problem, ( ) 0T x ≡ɶ  when 

2s x L≤ ≤ .  

Since (1) is parabolic on the subdomains, if (A2) holds 
then xT  is uniformly bounded by a constant depending on the 
initial condition and bounds on u . (See, e.g., Theorem 11.1 
from Section III.11, p. 211 of [14].) By (2), this means that 
the solidification front speed is bounded, i.e. 

 min max0 s s s≤ ≤ ≤ < ∞ɺ . (6) 
Also, as a consequence of the version of Poincare’s 

inequality given in [12] (Lemma 2.1, p. 17), we have an 

estimate on 
2

T : 

 ( )2 2 2 2 2 2 2

0 0 0
2 4 2 4 .

L L L

x f xT dx T s L T dx T L T dx≤ + = +∫ ∫ ∫  (7) 

That is, both T  and xT  are bounded in the ( )2 0,L L  norm, 

and hence T is bounded in the Sobolev space ( )1 0,H L . 

Similarly, Agmon’s Inequality (Lemma 2.4, p. 20, ibid) 
ensures that T  is also uniformly bounded. 

We now introduce the notation: 

 ( )
1
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:
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, if 

f

f

T T T
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T T T
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 <  =  
 + ≥
  

. 

In the physical system, this is proportional to the enthalpy of 
the material at the given temperature. We will use the 

notation ( ) ( ):h h T h T= −ɶ  for the difference in enthalpy and  
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for the total difference. Taking the time derivative of this 
value, and using the fact that Tɶ  is continuous, 
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Using equations (3)-(5), 
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B.  Control law 

With these estimates in mind, we now state the main 
result of this paper: 

Theorem 1. Suppose the initial conditions satisfy assumption 
(A1), the reference temperature profile satisfies assumptions 

(A2) and (A3), the boundary condition satisfies the control 
law 

 ( ) ( ) ( )u t u t kH t= + ɶ , (10) 

and the closed-loop system satisfies assumptions (A2) and 
(A3). 

Then the reference temperature error Tɶ  converges 
asymptotically to 0 uniformly over the domain, and the 
interface position error sɶ  converges to 0 asymptotically as 
well. 

Proof:  In light of (9), if the control law (10) is used, Hɶ  

and uɶ  are exponentially decreasing. As noted above, if all 

assumptions are satisfied, T  and T ,  and consequently also 

Tɶ  are bounded in ( )1 0,H L over time. Then, by the 

definition of Hɶ  in (8), sɶ  must also be bounded. 

Similar to the main proof in [10], we apply an infinite-
dimensional invariance principle from [15]. Consider the 
Lyapunov functional candidate 
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on the state space of the error system, ( ) ( )1, 0,T s H L∈ ×ɶ ɶ ℝ . 

This function is clearly continuous on that space, and non-
negative on trajectories of the system. 

 Taking the time derivative of the first term, 
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Then, applying the PDE (3), and integrating by parts, 
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Applying the boundary conditions from (1) and the 
relationships (4) and (5), 
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Differentiating the second term using gives 
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Combining (12) and (13), 
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We already noted that uɶ  decreases exponentially, and 
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where the final inequality follows from that of Cauchy-
Schwarz. Thus, the first term is exponentially decreasing. 
Under the assumptions, both sɺ  and sɺ  are positive and 
bounded below, as discussed above. Since the temperatures 
are bounded, choosing an appropriate temperature scale 
ensures ( )T s  and ( )T s  are also non-negative. So, after 

enough time, 
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Then, applying the Poincare inequality given in [12] (Lemma 
2.1, p 2.30), 
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We now apply the infinite dimensional invariance 
principle in [15], Theorem 6.3, p. 195. Using that notation, 

denote X  to be  ( )1 0,H L ×ℝ , the state space of the prob-

lem, and Y  to be  ( )0 0,C L ×ℝ . Denote Ŵ  and V̂  to be 

the extensions of W  and V  respectively to Y . By an app-
lication of the  Rellich-Kondrakov theorem (Theorem 5.5, p. 
269 in [16]) and the Ascoli-Arzela criterion (Appendix C.7, 
p. 635, ibid), X  can be shown to be compactly embedded in 
Y . As noted above, the trajectories of the error system are 
bounded in the space X . All conditions of the theorem are 
met, and we conclude that all trajectories of the system 
converge to the set 

 ( ){ } { }3
ˆ: 0 0y W y T⊂ ∈ = = ≡M Y ɶ  

in the Y -norm. That is, Tɶ  converges to 0 uniformly. 

Then, since both Tɶ  and Hɶ  converge to 0, according to 

the definition (8), sɶ  must converge to 0 as well. □ 

C. Discussion and simulation 

The main weakness of this result lies in the applicability 
of the assumptions. Assumption (A1) depends only on the 
initial conditions, and is entirely reasonable. Assumption 
(A2) can be satisfied by choosing the controller gain k  
sufficiently small.  For example, 
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H t
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will ensure that assumption (A2) holds on u . This gain can 
be further adjusted to limit the amount of control actuation, at 
the trade-off of reducing the rate of convergence. 

Assumption (A3) is more problematic. Obviously, the 
material will eventually completely solidify. The bounds 
necessary to the proof can still be shown to hold, allowing 
s L=  and neglecting the Stefan condition (2) in the PDE. 
The temperature condition, ( ) fT s T= , which was used in 

deriving (7) and (15), will also be lost. However, it is fairly 
easy to find equivalent limits on the linear system. The 
conclusion, that the temperature error converges uniformly to 
0, will still hold, but this is not a satisfying result. Hence, for 
certain initial errors and reference profiles, the temperature 
error may not converge very closely before solidification is 
completed. In general, as the speed sɺ  of the reference 
solidification front speed gets smaller, the temperature and 
interface position errors will converge closer to 0 before the 
material is completely solidified. 

A stronger result would be to guarantee the rate of 
convergence, but we are currently unable to prove this 
mathematically. We can, however, offer simulation evidence 
that this is the case. Figures 4-6 show a simulation of this 
control algorithm. The actual system ( ),T s  is given a 

different initial condition than the reference system ( ),T s . 

The specific initial conditions used are shown in Figure 1, 
and the rest of the simulation parameters are given in Table 1. 

Due to the spatial discretization, the location of the 
interface s  has some inherent uncertainty that can lead to 
numerical noise in control law (10). Since the simulation 
method used is based on the calculated enthalpy at each node, 
this was used directly in the control calculations instead. This 
ensures the control response, seen in Figure 6, does not spike 
whenever the estimated interface position passes a node. 

In this simulation, the reference temperature and interface 
position errors, in Figures 4 and 5, respectively, are clearly 
converging exponentially fast. Work is continuing into 
proving such bounds on the rate of convergence. 

Finally, we note that the proof was only specific to the 
single-phase Stefan problem in applying Agmon’s and 
Poincare’s Inequalities, e.g. in (15), which required that 

( ) 0T L =ɶ , and in using the estimate (6) to ensure negative 

definiteness of the Lyapunov functional time derivative. The 

former is easily dealt with by using a weaker bound on T
∞
ɶ  

based on compactly embedding ( )1 0,H L  into ( )0 0,C L , as 

described above. The inequality (6) is still usually true for the 
two-phase Stefan problem, but it is difficult to determine 
exact conditions on the inputs and initial conditions that 
ensure the condition holds.  Currently, the best that can be 
proven for the two-phase Stefan problem is the following: 

Corollary 1. Suppose the system satisfies the conditions of 
Theorem 1, with the exception that we allow ( )0 fT x T>  in 

the range 0s x L< ≤ , and a similar condition on the 

reference. Then, if both 0s ≥ɺ  and 0s ≥ɺ  for the entire time, 



  

the reference temperature error converges to 0 in the uniform 
norm, and the interface position error converges to 0 as well. 

IV.  EXTENSIONS 

A. Temperature-convergent control 

Returning to the calculation (14), if 

 ( ) ( )0 0 0u T ≥ɶɶ , (17) 

then the estimate (16) still holds, and the invariance principle 
can be applied. However, the total enthalpy may not 
converge to 0, so temperature convergence does not imply 
convergence of the interface position. In fact, for an 
arbitrarily small temperature error, the interface position error 
can still be arbitrarily large. To summarize: 

Theorem 2. Suppose the reference system and actual system 
satisfy assumptions (A1)-(A3) and condition (17). Then the 
reference temperature error converges uniformly to 0. 

This result covers a class of controllers including 
proportional control based on the surface temperature and 
similar finite-dimensional approaches. However, there are 
great drawbacks to this simplistic approach, which are 
illustrated by the simulations shown in Figures 2 and 3. 

Both actual and reference system in these simulations use 
the reference input for the boundary condition, i.e. 0u ≡ɶ . 
Under Theorem 2, the temperature error should converge to 
0. Figure 2 does show the temperature error converging, but 
extremely slowly. There is also the problem of the interface 
position. From (9), we  can conclude that the total enthalpy 
error is constant over time. Then, given (8), the interface 
position error must converge to a constant that is non-zero if 
the initial total enthalpy error is non-zero. This behavior can 
be observed in Figure 3. 

B. Estimation and output feedback 

Unfortunately, full-state feedback is not realistic for this 
problem. Enthalpy cannot be directly measured, only 
temperature can. Moreover, only the steel surface 
temperature can realistically be measured during actual 
casting. For an implementable control algorithm, we need an 
estimation scheme. 

One approach, as proposed in [10], is to use the result of 
Theorem 2 to provide an estimation algorithm. The idea is to 

use an estimate ( )ˆ ˆ,T s  of the actual system that is a solution 

to (1)-(2) with left-hand boundary condition 

 ( ) ( )ˆ 0, 0,T t T t= . 

Under Theorem 2, the temperature estimation error should 
converge to 0, but the interface position estimation may not 
converge to the true location.  

 In simulations, we have achieved better performance 
using an estimation procedure that adjusts the solidification 
front position as a function of the surface temperature 
estimation error. The method, which is not yet proven to 
work, is as follows: 

Let T̂ and ŝ  be an estimate of the temperature T  and 
interface location s , respectively. Let the estimates satisfy 
the following PDE 

 
Figure 5. Solid-liquid interface position using state-feedback control 

law (10) 
 

 
Figure 4. Reference temperature error using state-feedback control law 

(10) 
 

 
Figure 6. Boundary control input using state-feedback control law (10) 
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(19) 

where the initial conditions satisfy assumption (A1) and the 
estimation gain 0l > . 

Conjecture. Suppose ( ),T s , ( ),T s , and  ( )ˆ ˆ,T s  all satisfy 

the conditions for Theorem 1. Then under the control law 

 ( ) ( )
0

1 1ˆ ˆ ,
L

u u k T T dx s s
a b
 = − − − − 
 ∫  (20) 

the temperature reference and estimation errors uniformly 
converge to 0, and the interface position reference and 
estimation errors converge to 0. 

Figures 7-10 show a simulation using this output-
feedback control law. The initial estimation is the same as the 
reference, i.e. 

 0 0 0 0
ˆ ˆ,T T s s= = . 

The estimation and reference errors appear to be converging 
to 0 exponentially. However, this apparent result remains 
conjecture, and is a subject of ongoing work. 

V. CONCLUSION 

The goal of this paper is to improve on previous results 
on control of solidification systems by changing the error 
framework. The key insight is that when the controller design 
is based on a norm of the temperature error, the controller 
may attempt to over-compensate for the nonlinear dynamics, 
leading to unbounded, quickly varying actuation, as seen in 
[10]. This paper uses the novel conceptual framework of 
focusing instead on the enthalpy error for the control law. 
The control law devised in this formulation remains bounded, 
and is able to simultaneously provide asymptotic 
convergence for both the temperature and liquid-solid 
interface position of the desired reference. 
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